T. Y. B. Sc. (Mathematics)

20 Problems on Uniform Convergence with Hints

MT-342: Real Analysis II

V. M. Sholapurkar

1. Let f_n be a sequence of continuous real-valued functions that converges uniformly on [a, b]. Let

$$F_n(x) = \int_a^x f_n(t)dt, \quad a \le x \le b$$

Show that F_n converges uniformly on [a, b]. (Hint: Use Cauchy criterion for uniform convergence and then use modulus of integral \leq integral of modulus)

2. Let f_n be a sequence of continuous functions on [0, 1] that converges uniformly on [0, 1].

(a) Show that there exists M > 0 such that $|f_n(x)| \le M$, $\forall n$ and $\forall x \in [0, 1]$.

(Hint: Use Cauchy criterion, then triangle inequality and then choose maximum of a finite set.)

(b) Does the result in (a) hold if uniform convergence is replaced by pointwise convergence ? (Hint: Try $\frac{1}{1+nx}$).

3. Show by an example that Dini's theorem is no longer true if we omit the hypothesis of M that M is compact.

Let us recall Dini's theorem for a ready reference.

Dini's theorem: Let f_n be a sequence of continuous real-valued functions on a compact metric space (M, ρ) such that

$$f_1 \leq f_2 \leq \ldots f_n \leq \ldots$$
, on M .

If $f_n \to f$ pointwise to a continuous function f, then $f_n \to f$ uniformly on M.

(Hint: Consider $f_n(x) = \frac{x}{n}$ on $[0, \infty)$).

- 4. Let A be a dense subset of a metric space M and let $f_n \to f$ uniformly on A. Prove that $f_n \to f$ uniformly on M. (Hint : Combine definitions of uniform convergence and denseness).
- 5. Let f_n be a sequence of functions converging uniformly to a continuous function f on $[0, \infty)$. Prove that

$$\lim_{n \to \infty} f_n(x + \frac{1}{n}) = f(x), \quad 0 \le x < \infty$$

(Hint: Use definition of uniform convergence to get N_1 , then use definition of continuity to get a δ and hence N_2 . Take max $\{N_1, N_2\}$).

6. Give an example in each of the following cases :

(a) $f_n \to f$ on [0, 1], each f_n is Riemann integrable on [0, 1], but f is not Riemann integrable on [0, 1]. (Try: $f_n = \chi_{Q_n}$, where

 $Q_n = \{r_1, r_2, \dots, r_n\}$ and $r_1, r_2, \dots, r_n \dots$ is enumeration of rational numbers in [0, 1].

(b) $f_n \to f$ uniformly on \mathbb{R} each f_n is differentiable on \mathbb{R} , but f is not differentiable. (Try: $f_n = \sqrt{x^2 + \frac{1}{n}}$).

(c) $f_n \to f$ uniformly on \mathbb{R} each f_n is differentiable on \mathbb{R} , but f'_n is not (even pointwise) convergent. (Hint: Take $f_n(x) = \frac{\sin nx}{n}$).

(d) $f_n \to f$ uniformly on [0,1] each f_n is differentiable on [0,1], f is differentiable on [0,1], f'_n is convergent but f'_n does not converge to f'. (Hint : Try $\frac{x^n}{n}$).

7. Let f_n be a sequence of continuous functions converging uniformly to f on [a, b]. Let g be a continuous function on [a, b]. Prove that

$$\lim_{n \to \infty} \int_a^b f_n g = \int_a^b f g$$

(Hint: Estimate $\left| \int_{a}^{b} (f_n g - fg) \right| \leq \int_{a}^{b} |(f_n g - fg)|$ and use definition of uniform convergence).

8. If the series $\sum_{n=0}^{\infty} a_n$ is convergent and

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \qquad -1 < x < 1$$

then prove that f is continuous on (0, 1). (Hint: The power series $\sum_{n=0}^{\infty} a_n x^n$ is given to be convergent at x = 1. Thus it is uniformly convergent on compact subsets of (-1, 1). Now use that each term $a_n x^n$ is continuous).

9. Let u_1, u_2, \ldots be continuous functions on a metric space M. If $\sum_{n=1}^{\infty} u_n(x)$ is uniformly convergent on a dense subset of M, prove that $\sum_{n=1}^{\infty} u_n(x)$ is uniformly convergent on M.

(Use Problem 4 for the sequence of partial sums).

10. If $\sum_{n=0}^{\infty} |a_n|$ is convergent, then prove that

$$\int_{0}^{1} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \frac{a_n}{n+1}$$

is convergent (Hint: The power series $\sum_{n=0}^{\infty} a_n x^n$ is given to be convergent at x = 1. Thus it is uniformly convergent on compact subsets of (-1, 1). Thus term by term integration is valid on (0, 1).)

11. Without finding the sum f(x) of the series

$$1 + \frac{x^2}{1!} + \frac{x^4}{2!} + \frac{x^6}{3!} + \dots - \infty < x < \infty,$$

prove that f'(x) = 2xf(x) (Hint: Show that the radius of convergence of the series in ∞ . Thus the series converges uniformly on any compact subset on \mathbb{R} . therefore the term by term differentiation is valid).

12. Justify whether true or false : If f_n converges uniformly and g_n converges uniformly, then $f_n g_n$ converges uniformly (Check $f_n = g_n = x + \frac{1}{n}$ on \mathbb{R}).

- 13. Let $f_n(x) = \left(1 + \frac{x}{n}\right)^n$, $x \in \mathbb{R}$. Show that f_n converges uniformly to e^x on any compact subset $[a, b] \subset \mathbb{R}$ (Hint : Apply Dini's theorem).
- 14. Show that the sequence $\frac{x^n}{1+x^2n}$ converges uniformly on [2, 10]. (Put upper bound on f_n by using bounds of [2, 10].) Does the sequence converge on [0, 2]? What about [-2, 0]? (Check what happens at x = 1 or x = -1.)
- 15. Show that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ is converges uniformly, but not absolutely on [0, 1). (Hint: Show that the sequence of partial sums is uniformly Cauchy but the same is not true with the sequence of partial sums after taking absolute values).
- 16. Give an example of a series $\sum f_n(x)$ such that each f_n is continuous on \mathbb{R} , but the sum is not continuous on \mathbb{R} . (Try $f_n(x) = \frac{x^2}{(1+x^2)^n}$) (Watch the sum at x = 0).
- 17. Show that the sequence $\frac{nx}{1+n^2x^2}$ is not uniformly convergent on any interval containing 0. (Hint: what happens at $x = \frac{1}{n}$).

18. Test the uniform convergence of the series $\sum_{n=1}^{\infty} x e^{-nx}, 0 \le x \le 1$. (Find $\sup\{|f_n(x) - f(x)|\}$).

- 19. Test the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ on \mathbb{R} . (Hint: Differentiate, find upper bound on f_n and use Weierstrass M-test).
- 20. Test for uniform convergence, the series

$$\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots, \quad \frac{-1}{2} < x < \frac{1}{2}$$

(Use Weierstrass M-test).